Contribution of reactive oxygen species to the pathogenesis of pulmonary arterial hypertension

نویسندگان

  • Nikki L Jernigan
  • Jay S Naik
  • Laura Weise-Cross
  • Neil D Detweiler
  • Lindsay M Herbert
  • Tracylyn R Yellowhair
  • Thomas C Resta
چکیده

Pulmonary arterial hypertension is associated with a decreased antioxidant capacity. However, neither the contribution of reactive oxygen species to pulmonary vasoconstrictor sensitivity, nor the therapeutic efficacy of antioxidant strategies in this setting are known. We hypothesized that reactive oxygen species play a central role in mediating both vasoconstrictor and arterial remodeling components of severe pulmonary arterial hypertension. We examined the effect of the chemical antioxidant, TEMPOL, on right ventricular systolic pressure, vascular remodeling, and enhanced vasoconstrictor reactivity in both chronic hypoxia and hypoxia/SU5416 rat models of pulmonary hypertension. SU5416 is a vascular endothelial growth factor receptor antagonist and the combination of chronic hypoxia/SU5416 produces a model of severe pulmonary arterial hypertension with vascular plexiform lesions/fibrosis that is not present with chronic hypoxia alone. The major findings from this study are: 1) compared to hypoxia alone, hypoxia/SU5416 exposure caused more severe pulmonary hypertension, right ventricular hypertrophy, adventitial lesion formation, and greater vasoconstrictor sensitivity through a superoxide and Rho kinase-dependent Ca2+ sensitization mechanism. 2) Chronic hypoxia increased medial muscularization and superoxide levels, however there was no effect of SU5416 to augment these responses. 3) Treatment with TEMPOL decreased right ventricular systolic pressure in both hypoxia and hypoxia/SU5416 groups. 4) This effect of TEMPOL was associated with normalization of vasoconstrictor responses, but not arterial remodeling. Rather, medial hypertrophy and adventitial fibrotic lesion formation were more pronounced following chronic TEMPOL treatment in hypoxia/SU5416 rats. Our findings support a major role for reactive oxygen species in mediating enhanced vasoconstrictor reactivity and pulmonary hypertension in both chronic hypoxia and hypoxia/SU5416 rat models, despite a paradoxical effect of antioxidant therapy to exacerbate arterial remodeling in animals with severe pulmonary arterial hypertension in the hypoxia/SU5416 model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pulmonary arterial hypertension: the clinical syndrome.

Pulmonary arterial hypertension is a progressive disorder in which endothelial dysfunction and vascular remodeling obstruct small pulmonary arteries, resulting in increased pulmonary vascular resistance and pulmonary pressures. This leads to reduced cardiac output, right heart failure, and ultimately death. In this review, we attempt to answer some important questions commonly asked by patients...

متن کامل

بررسی اثر تادالافیل خوراکی در کاهش پرفشاری شریان ریوی در کودکان و نوجوانان 5 ماهه تا 15 ساله

Introduction: Pulmonary arterial hypertension in children has consequences such as right ventricular failure and even death. Recently, the use of phosphodiesterase 5 inhibitors has been taken into account in the treatment of pulmonary hypertension, among which tadalafil is more acceptable by parents and patients due to its single dose per day compared to sildenafil which should be taken 4 times...

متن کامل

Lack of Bcr and Abr Promotes Hypoxia-Induced Pulmonary Hypertension in Mice

BACKGROUND Bcr and Abr are GTPase activating proteins that specifically downregulate activity of the small GTPase Rac in restricted cell types in vivo. Rac1 is expressed in smooth muscle cells, a critical cell type involved in the pathogenesis of pulmonary hypertension. The molecular mechanisms that underlie hypoxia-associated pulmonary hypertension are not well-defined. METHODOLOGY/PRINCIPAL...

متن کامل

Leukotriene B4 Activates Pulmonary Artery Adventitial Fibroblasts in Pulmonary Hypertension.

A recent study demonstrated a significant role for leukotriene B4 (LTB4) causing pulmonary vascular remodeling in pulmonary arterial hypertension. LTB4 was found to directly injure luminal endothelial cells and promote growth of the smooth muscle cell layer of pulmonary arterioles. The purpose of this study was to determine the effects of LTB4 on the pulmonary adventitial layer, largely compose...

متن کامل

Increased xanthine oxidase activity in idiopathic pulmonary arterial hypertension.

Oxidative stress may play a role in the pathogenesis of idiopathic pulmonary arterial hypertension (IPAH) [1–4]. A major contributor to oxidative stress is the endothelium-bound enzyme xanthine oxidase (XO), which is involved in the generation of superoxide anions and peroxynitrite [5]. These reactive oxygen species have been implicated in endothelial dysfunction and vascular damage [5]. In viv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017